Student Mentoring Event at National AFS Meeting in Tampa

Did you know that on average, there are seventy applicants per entry level job opening in fisheries science?!?!?!
Under these hyper competitive conditions, early career scientists must use every technique and tool available to make themselves stand out! An upcoming event at the Tampa AFS meeting can help you learn what you need to do to improve your chances of getting a job.

Continue reading

Shellfish Shop Talk

By: Carrie Schuman


I was mulling over what to write for my upcoming Reef to Rivers post while at the recent National Shellfisheries Association (NSA) annual meeting in Knoxville, TN when it occurred to me that I was hearing about a multitude of blog-worthy topics at the conference. The following is a quick introduction to some fascinating research happening in the shellfish world right now:

scallopPhoto credit: National Geographic

Continue reading

The Genetics of Invasive Species

By John Hargrove
University of Florida

The spread of species outside their native range is a subject we are becoming increasingly familiar with. Asian Carp in the Mississippi. Zebra Mussels in the Great Lakes. And the list goes on and on. But one has to wonder, how on Earth do these populations succeed given they are often initiated with small numbers of individuals and therefore limited genetic diversity. This same scenario, after all, is what has prevented the recovery of numerous imperiled species such as the California Condor and Florida Panther. So what gives?

Asian carp.jpg

Asian Carp, a collective term for Bighead, Silver, Grass, and Black Carp, were originally introduced in the US in the 1970’s to control aquatic weed populations. Since that time they have established breeding populations and have dramatically expanded their range throughout the Mississippi River drainage basin

Continue reading

The Student Subunit is on Amazon Smile!

AmazonSmile is a simple and automatic way for you to support an organization every time you shop, at no cost to you. You’ll find the exact same low prices, selection and convenient shopping experience as, with the added bonus that Amazon will donate a portion of the purchase price to the subunit.

To select the FLAFS student subunit as your AmazonSmile organization and show your support, follow the link below: amazon

Awe, Shucks: How to Shuck an Oyster

Awe, Shucks: How to Shuck an Oyster
Natalie Simon, University of Florida

With valentine’s day right around the corner (T-minus one month), what better way to celebrate than with Oysters! Throughout history, oysters have been portrayed as a symbol of love. For instance, the Greek goddess of love, Aphrodite, is often painted as a beautiful woman rising from the sea on an oyster shell and Casanova, the 18th-century lover boy, is reported consuming a dozen oysters for breakfast. Whether or not oysters are an aphrodisiac, their luxurious nature is worth embracing! So, let’s impress your loved one with a decadent plate of oysters freshly shucked!

Don’t know how to shuck an oyster? No problem! This handy technique will surely add to your kitchen repertoire!

Continue reading

Dwarf Seahorses in Florida’s Seagrass

The dwarf seahorse, Hippocampus zosterae, is a small creature found in the seagrass beds of the Gulf of Mexico and Florida’s Atlantic coast. A skim through some of the older literature about this species will tell you that their scientific name is derived from Zostera marina, the scientific name of the seagrass that they were believed to commonly be found in. Thanks to the current available data, we now know that the ranges of these two species don’t actually overlap.
Continue reading

Black Bass in Africa

By John Hargrove, PhD Candidate, University of Florida

When one thinks about predatory animals in Africa, the natural inclination is to think of the big five. Lions, elephants, buffalo, leopard, and rhino. But lurking beneath the surface of many southern Africa lakes and reservoirs is another type of predator altogether, an invasive apex predator from the United States that bears the potential to inflict significant harm on native endemic fishes. That predator is the Largemouth Bass…

Zim 18lb4oz (2).jpg

The current record Largemouth Bass from southern Africa, an 18.26 lb fish caught in July 2004 by Maxwell Mashandure from Darwendale Dam.

Continue reading

Natural Tags

By: Julie Vecchio

PhD Student
University of South Florida

Many researchers and anglers know about tagging fish, sharks, or even other organisms to learn about their movements. Anglers enjoy participating in these programs because they can help with science and learn something new about the fish in their area. However, an emerging topic in ecology is the use of “natural tags.” Essentially, using natural tags means using the internal chemistry of an organism to learn about its genetics, origin, movements, or even chemical exposure levels. Currently there are three main types of natural tags that are commonly used. These are genetic signatures, otolith microchemistry, and tissue isotopes.

Genetic Signatures

In Florida, the primary species that has been studied on a large scale using genetic signatures is the tarpon, Megalops atlanticus, a popular sportfish. Currently the Florida tarpon fishery is entirely catch-and-release. During this project, citizen scientists collected DNA samples from their catch. Before releasing the fish, the angler would take a swab of the outer jaw, picking up a few skin cells. These cells were then processed for the genetic signature.

Each individual has a unique genetic code.  Using the genetic signature, researchers are able to determine whether that particular individual has been sampled genetically before. Based on the numbers of different individuals captured, and the number of times a particular individual has been re-sampled, the researchers can then get an idea of the total size of the tarpon population in Florida’s waters. If the individual had been captured previously, the researchers can also determine how far that fish has moved since the last time it was captured. During the 10-year project, researchers analyzed over 22,000 genetic samples from tarpon.

DNA sampling has a few distinct advantages over conventional tagging techniques. First, it is relatively inexpensive. Since anglers are already capturing the fish, additional research time is not needed to collect samples. Second, it is relatively non-invasive. The fish barely feels the scrape as the skin cells are collected. Finally, all organisms maintain their DNA signature throughout their lives, negating the need to factor in tag-shedding.

To learn more about tarpon genetic signatures visit this website.

Otolith Microchemistry

Just like people, fish have three small bones in their ears, used primarily for balance, but fish also use theirs for hearing. In fish they are called otoliths. Fish otoliths are made of calcium carbonate, the same material that makes up oyster shells. Each day of the fish’s life, it deposits a miniscule new layer of calcium carbonate on the outside of the otolith.  As these tiny rings accumulate, they form seasonal patterns. These patterns can be counted to find out how old the fish is.

However, otoliths are not made of 100% calcium carbonate. Other elements, especially metals like aluminum, strontium, and many others are also incorporated into the otolith matrix, and the signature of these elements can reveal where a particular individual was living at some period during its life. This can be especially useful for finding out where individuals were living as juveniles, to better understand what habitats produce the most successful adults.

What the above graphic shows is that juvenile gag grouper living in each of Florida’s major west coast estuaries contains a unique chemical signature. This information can be used to determine the locations adults, which live offshore in mixed populations, had spent their juvenile period. This information can help managers determine which specific nursery areas are most important to protect.

Otolith microchemistry can also be used to determine whether, and even when, an individual was exposed to environmental toxins, such as an oil spill. This technique is currently being used to evaluate the impact of the Deepwater Horizon oil spill on both estuarine and reef fish species in the northern Gulf of Mexico.

Tissue isotope analysis

As a fish lives, eats, and grows within a particular environment, the chemistry of the surroundings are incorporated into all of its tissues. Many of the most common elements such as carbon and nitrogen exist in the environment in a variety of forms, usually light (normal) or heavy (rare), and sometimes radioactive (such as C-14). By chemically analyzing the ratio of heavy to light versions of these elements, or counting the number of radioactive atoms, we can learn information about where the fish has been living and what it has been eating at various time-scales. We can even tell the age of very old fish using this method.

Different body tissues recycle their cells at varying rates, resulting in our ability to infer movement at different timescales. For example, liver cells are recycled quickly (1-3 weeks) and muscle cells are recycled much more slowly (1-3 months).  A recent pilot study of juvenile red grouper on the West Florida Shelf showed that all of these 1-year old fish had traveled to their location from the north over the previous month or so. Since liver values equilibrate with their environment much faster, the graph shows that most of these individuals had been living to the north, but then moved southward. Specimen 5 had probably arrived to the area within the past week, while specimens 6 and 12 had probably been in the area for at least 1 month.

One tissue which never turns over is the eye lens. Like otoliths, a fish will add material to the eye lens as it grows. We can then peel back the layers of the lens, just like peeling an onion, and analyze the chemistry to reveal not only where a fish has been living, but also what it has been eating throughout its entire lifespan. This is particularly useful for long-lived fish or species which use a variety of habitats.

In most species, the ratio of heavy to light nitrogen can tell researchers that the individual fish eat larger prey as they grow in size. In the graph below, the shorter lines represent younger fish. Longer lines are older fish. All fish display the same pattern of eating larger prey as they grow throughout their lives.

A final use for the isotopes in the eye lenses of fishes is to find out the age of very old fish or fish that don’t have a good record of growth within their otoliths. A recent study measured the radioactive carbon in the eye lenses of Greenland sharks and found them to be up to 200 years old.

Nielsen et al. 2016. Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science. 353 (6300): 702-704


In short, the use of chemical signatures embedded in the cells of fish has become an invaluable tool to understand the movements, living habits, and food preferences of a variety of important fish species. These techniques are expanding our understanding of fish in many directions that were not possible just a few years ago. Using genetic signatures, microchemistry of otoliths, tissue isotopes, and even yet-to-be developed chemical techniques will continue to expand our knowledge of important fisheries species, improving our ability to manage and conserve them for generations to come.

What’s in a Name: The Smalltooth Sawfish (Pristis pectinata)

Kelcee L. Smith
M.Sc. Student
Lousiana State University

Interested Person: “Sawfish? … Oh! You mean swordfish?!”
Me: *** Shakes head***
Me: “No, I mean SAW-fish.”
Interested Person: “Oh yeah! I see fish all the time.”
Me: ***Face Palm***

As silly as this sounds, this is often the conversation I have with people about Sawfish. At this point in the conversation, I usually pull out my handy Sawfish figurine, which most times bridges the gap in the misunderstanding. Get your own Sawfish figurine here.

Unfortunately for Sawfish, their common name, though accurate, is part of their downfall. I often hear “Sawtooth” or “Sawshark” – which is a real creature (more on that later) – instead of the correct verbiage. And you may say, “Kelcee, this is all just semantics. Who cares?” Well, it is important. We know from research in psychology that if a person is able to identify a particular creature, even an unappealing one, they will be more likely to conserve it (Vincenot et al. 2015). Part of understanding what Sawfish are is knowing how they are different from the Sawshark and Swordfish, and knowing that Sawtooth isn’t even a word (unless the words are separated and are in reference to the individual teeth on the tool we know as a saw).
Diagram of the tool we know as a saw and a close up of an actual saw tooth. Images courtesy of Google.

I’ll admit that the Smalltooth Sawfish common name is quite confusing. The word “tooth” and the word “saw” are inherently the same in some people’s heads (both having to do with cutting) and thus, often come out the mouth the same way too. Not to mention the mental bridge that can be seen with the words if they’re close together: Smalltooth Sawfish can easily become Sawtooth Smallfish. Additionally, the size of the teeth really have nothing to do with identifying the creature. Tooth spacing and saw size are much more important identifiers (Whitty et al., 2014).
So what’s a Smalltooth Sawfish scientist to do?
Firstly, pictures help a lot. And luckily, with today’s technologies, it’s easy to pull up a picture of a Sawfish on your phone if you don’t have your Sawfish figurine handy.
Secondly, I like to stick with one word, usually just “Sawfish,” to keep things simple and easy to remember for someone who has never encountered the creature or its name. This works well for the public as well as other scientists.
Thirdly, be patient and persistent. One great thing about Sawfish is that they’re hard to forget, so once a picture is associated with the appropriate name, ignorance becomes less common. Don’t be afraid to correct someone politely either; people are often too interested to learn to feel threatened by your clarification.
Ultimately, conservation of Sawfish will only be accelerated by understanding and education with consistent efforts. So, if you ever find yourself chatting with your mom about the creatures of the deep, explaining your research to other scientists, or exchanging a great fishing story with another fishermen, keep your Sawfish figurine close and fight the good fight. 
A Smalltooth Sawfish (Pristis pectinata) sits on the bottom. Photo courtesy of National Geographic.